We are pleased to share newly published research authored by CIRG members Oliver Koch, Claire Mackintosh, David Dockrell, Kate Templeton and Sinéad Plant. A brief outline of the two studies is provided below, as well as a link to access the full publication.
___________________________________________________________________________________________________________
1. Randomised controlled trial of intravenous nafamostat mesylate in COVID pneumonitis: Phase 1b/2a experimental study to investigate safety, Pharmacokinetics and Pharmacodynamics.
Background
Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials in COVID19 without characterisation of Pharmacokinetics /Pharmacodynamics including safety data. One such drug is nafamostat mesylate.
Methods
We present the findings of a phase Ib/IIa open label, platform randomised controlled trial of intravenous nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), nafamostat or an alternative therapy. Nafamostat was administered as an intravenous infusion at a dose of 0.2 mg/kg/h for a maximum of seven days. The analysis population included those who received any dose of the trial drug and all patients randomised to SoC. The primary outcomes of our trial were the safety and tolerability of intravenous nafamostat as an add on therapy for patients hospitalised with COVID-19 pneumonitis.
Findings
Data is reported from 42 patients, 21 of which were randomly assigned to receive intravenous nafamostat. 86% of nafamostat-treated patients experienced at least one AE compared to 57% of the SoC group. The nafamostat group were significantly more likely to experience at least one AE (posterior mean odds ratio 5.17, 95% credible interval (CI) 1.10 – 26.05) and developed significantly higher plasma creatinine levels (posterior mean difference 10.57 micromol/L, 95% CI 2.43–18.92). An average longer hospital stay was observed in nafamostat patients, alongside a lower rate of oxygen free days (rate ratio 0.55–95% CI 0.31–0.99, respectively). There were no other statistically significant differences in endpoints between nafamostat and SoC. PK data demonstrated that intravenous nafamostat was rapidly broken down to inactive metabolites. We observed no significant anticoagulant effects in thromboelastometry.
Interpretation
In hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous nafamostat, and there were additional adverse events.
Click here to view.
___________________________________________________________________________________________________________
2. Evaluation of new or repurposed treatments for COVID-19: protocol for the phase Ib/IIa DEFINE trial platform.
Introduction COVID-19 is a new viral-induced pneumonia caused by infection with a novel coronavirus, SARS-CoV-2. At present, there are few proven effective treatments. This early-phase experimental medicine protocol describes an overarching and adaptive trial designed to provide safety data in patients with COVID-19, pharmacokinetic (PK)/pharmacodynamic (PD) information and exploratory biological surrogates of efficacy, which may support further development and deployment of candidate therapies in larger scale trials of patients positive for COVID-19.
Methods and analysis Define is an ongoing exploratory multicentre-platform, open-label, randomised study. Patients positive for COVID-19 will be recruited from the following cohorts: (a) community cases; (b) hospitalised patients with evidence of COVID-19 pneumonitis; and (c) hospitalised patients requiring assisted ventilation. The cohort recruited from will be dependent on the experimental therapy, its route of administration and mechanism of action. Randomisation will be computer generated in a 1:1:n ratio. Twenty patients will be recruited per arm for the initial two arms. This is permitted to change as per the experimental therapy. The primary statistical analyses are concerned with the safety of candidate agents as add-on therapy to standard of care in patients with COVID-19. Secondary analysis will assess the following variables during treatment period: (1) the response of key exploratory biomarkers; (2) change in WHO ordinal scale and National Early Warning Score 2 (NEWS2) score; (3) oxygen requirements; (4) viral load; (5) duration of hospital stay; (6) PK/PD; and (7) changes in key coagulation pathways.
Click here to view.